A STUDY OF DECORATIVE DESIGNS ON GOOSE CREEK AND SAN JACINTO POTTERY OF SOUTHEAST TEXAS

W. MARSHALL BLACK

Report No. 8, 1989
Houston Archeological Society
A STUDY OF DECORATIVE DESIGNS ON GOOSE CREEK
AND SAN JACINTO POTTERY OF
SOUTHEAST TEXAS

W. MARSHALL BLACK

Report No. 8, 1989
Houston Archeological Society
A STUDY OF DECORATIVE DESIGNS ON GOOSE CREEK AND SAN JACINTO POTTERY OF SOUTHEAST TEXAS
W. Marshall Black

INTRODUCTION

Nearly 2000 years ago, the archaic inhabitants of Southeast Texas began to make pottery. They adopted a distinctive style in regard to paste compositions, vessel forms, and decoration, which is known, broadly, as Goose Creek Ware (Wheat, 1953; Suhm and Jelks, 1962).

The origins are uncertain, but if one believes in diffusion (as opposed to independent invention) the ideas most certainly came from the east and spread westward (Aten, 1983). The extreme range of the Goose Creek pottery tradition is from western Louisiana to the Colorado River and inland as much as 100 miles. Northern Galveston Bay appears to be the focal point.

The taxonomy proposed by Aten (1983) includes two major types based on temper. The classic Goose Creek type is untempered but there is a more pervasive, temporally and spatially, Goose Creek type that is heavily sand tempered. Around 1000 AD grog (crushed postherd) temper began to be used. This is called San Jacinto ware. This type became dominant in the Galveston Bay area by around 1400 AD, then diminished in favor of the Goose Creek types. Coincident with the advent of grog temper there was a marked increase in variety and complexity of decorative designs (Aten, 1983).

Goose Creek ware vessels are austere, utterly lacking in any form of appendages (Amber, 1967; Black, 1987). The "pot" vessels are wide-mouthed and somewhat egg-shaped, pointed end down. A "median" size might be 20 cm in diameter and of a like or somewhat greater height, with a wall thickness of four to five millimeters.

Some of the pottery is decorated by (usually) incising an elementary geometric design, or better, a geometric "construction" around the exterior rim. The quality of execution is generally poor if precision is the measure.

The objectives of this work were (1) to catalog as large an assemblage of decorated sherds as could be conveniently accessed, i.e., to record the constructions in a systematic way, and then (2) to examine the catalog to see if there are clues to answering the following often heard questions:

- Is there any diagnostic geographical variation of the constructions?
- Is there any temporal variation that would be of value in dating?
- Were certain constructions restricted to certain vessel sizes (functions)?
- Do frequently occurring constructions have symbolic meaning?
- Did individual potters or their lineage have their individual constructions?
Obviously, there can be no certain answers, particularly to the last two questions, but some arguments for conjectures might be found. And there remains some merit to publishing a catalog of specimens drawn largely from private collections. The author is unaware of any synthesis that focuses directly on these primitive efforts of a people to express and to please themselves to the best of their ability - if indeed, that was the motive.

The author would like to extend his thanks to the following for their assistance with this publication: The Brazosport Museum, Houston Museum of Natural Science, Texas A & M University, Allen Badget, Alan Duke, Blaine Ensor, Joe Hudgins, Mike Marshall, and Johnny Pollan.
ABOUT THE CATALOG

The Collections

The author was able to access several private and museum collections. Such examples from the literature as could be recalled were also included to increase geographic coverage, although no effort was made to be exhaustive. In addition, prepublication data was obtained from Texas A & M University on a major excavation of an inland site. Appendix A lists the sources. In total, 241 specimens are included in this first catalog. An additional 21 specimens were examined but not cataloged to reduce duplication in a "Horizontal Line Only" Family (See Below).

Recording Method

Much thought was devoted to the selection of a method of capturing the design which would provide the following flexibilities:

* Each example, together with its documentation, should be independently mobile and of the same size. This is to permit filing and then sorting according to some attribute.

* The method should be suited to "away from home" preparation.

* The originals should be suited to direct and cheap reproduction when arranged on panels.

Photography was rejected out of hand. Experiments with ways of "lifting" the design by rubbing, or dusting and lifting proved unsatisfactory. It came down to the time honored way: drawing, really, cartooning. Cartooning has many merits when the immediate intent is to focus on the design and not the overall aspect of the sherd.

A very workable solution was to use business cards. These were printed in format suitable to the minimum of documentation, leaving space for the cartoon. The completed cards were filed in notebook size transparent card holders, ten to the page. This afforded constant visibility of specimens in the growing catalog which led to recognition of a scheme for classification into manageable groups or families according to "line elements" that are present. The pages were reproduced by reducing Xerox (80%) without need to remount.

Elements of Design Construction

The basic element of the "Goose Creek" geometric design is a horizontal line, i.e., parallel to the rim. The horizontal line usually extends around the rim and thus has no beginning or end. It could be regarded as the simplest or the most sophisticated motif. It often constitutes the entire decoration either singly or in closely spaced multiples or, as a pair or so, more widely spaced. If the construction is more complex, a horizontal line is usually the "clothes line" from which the motif is hung, and often its boundary(s). A horizontal line must be regarded as a primary line, in all probability the one that is executed first. Even so, there are exceptions in which there is no horizontal line.
The diagonal line is taken here as the next most important primary line. This is because the triangle was a much favored figure. The triangle results from use of short, touching diagonals of opposite slope, usually bounded on the third side by a primary horizontal line. Diagonals are also important as secondary lines in the form of cross-hatching parallel to one of the diagonals or horizontals. Many constructions use diagonals having one slope; the opposing diagonal is not present.

Vertical lines, i.e., perpendicular to the horizontal lines, are usually primary lines. For example, if a number of uniformly spaced, bold, primary horizontals are crossed by vertical lines of equal boldness, the construction becomes a grid; thus, the verticals assume more importance than secondary cross-hatches. Also, two closely-spaced horizontals connected by more closely or equally spaced verticals become a denticulate or ladder-like motif which may be the sole decoration.

Curved lines are rare. They usually are undulations across an axis parallel to the rim. Possibly the rarity is due to the difficulty of execution. The extreme case, a circle, is extremely rare (nonexistent?) as an incised figure, but does occur as formed by reed stamping.

Zig-zag (lightning bolt) lines are also known but are extremely rare. Otherwise, such would be considered as a compound primary line.

The concept of primary lines and secondary lines was put forth at the outset in that it might have diagnostic utility. Often the construction itself signals secondary lines by less bold, sometimes careless execution; this is often the case in cross-hatching. Another test is the question: If a certain group of lines were omitted would the main idea still be there? If so, the catalog cartoons indicate secondary lines by a less bold pen.

This is illustrated in Figure 1. Figure 1a shows a complete construction. Figure 1b shows the primary lines. This is not to say that secondary lines are unimportant. For example, Figure 1c illustrates the more sophisticated use of alternation as a design feature, and this involves secondary lines.

Punctuation - closely spaced rows of small circular or triangular pits alongside or on a primary line give a distinctive touch to constructions otherwise composed of continuous lines. Sometimes a single or double row of punctuation is present in lieu of a continuous line. Punctuation is reminiscent of motifs on the older Tchefuncte and related types of Louisiana (Shenkel, 1980). Simple punctuation is not used herein as a separate Family criterion.

Curiously, examples are known where the primary construction itself is changed as many as five times around the rim. This is not alternation; there are no repeats. There are other examples of this trait (Suhm and Jelks, 1962).

Design Classification

To say that the decorative constructions found on Goose Creek pottery are composed of straight horizontal, vertical, and diagonal primary lines (purposefully to exclude curved lines) has not contributed much in that this group of lines is exhaustive - there are no others. The number of geometric border designs that could be created from use of any one or two is all but infinite, absent constraints.
Examination of decorated sherd collections over a period of time does create an impression or feel for line combinations that "look right" and "look wrong" for the Goose Creek assemblage. For example, Figure 2a and b are simple (and classic) line combinations that to the experienced eye look wrong, while Figure 1 looks right. The catalog has no Goose Creek constructions in the Figure 2 styles, but many in that of Figure 1.

The idea of reducing geometric design constructions into "Families" is used herein to provide a systematic order of presentation of the specimens found in the study assemblage. More importantly, this is a device for coarse grouping of the designs according to common construction attributes, or degrees of complexity, so that examination for temporal or spatial variations can be simplified, indeed, made possible, in view of the immense variety. The parallel to typology of lithics is obvious.

The following Families were recognized and used for sorting:

I. Horizontal only - lines parallel to the rim. This is numerically the largest group. The number of horizontal lines range from one to twenty or more.

II. Horizontal plus one diagonal - lines parallel to the rim, as above, plus diagonals having one slope. The slope is preponderantly "up to the right" (natural for a right-handed person). This is a large group.

III. Horizontal plus opposing diagonals - lines parallel to the rim plus diagonals of opposite slope, i.e., up "to the right" and also "up to the left." The triangle is a resultant motif within this large group.

IV. Horizontal plus vertical - lines parallel to the rim plus vertical lines. This is, numerically, a smaller group, which includes the narrow, denticulate band motif.

V. Horizontal plus opposing diagonals plus vertical - this small group has constructions that include all possible straight line classes.

VI. Opposing diagonals - primary lines consist of two diagonals. This Family includes specimens having a pair of continuous, parallel lines that alternately slope upward, then downward, then upward, etc.; closely spaced, nearly vertical lines also may be present.

VII. Curve - any construction having a curved or undulating line.

VIII. Vertical only - some of these may be fragments of a more complex construction. A few appear to be complete.

IX. Miscellaneous - specimens having stamped fields or other exotic elements.

These Families are based purely on design geometry without regard to taxonomy, vessel size, locale or other attributes. The germ idea of such a classification scheme was tried by Hole (1974, Table 4) for a small collection from a single site.
DOCUMENTATION

Method of Design Application

Replication experiments (Black, 1988) suggest that there were several techniques of marking. These will be generalized herein as incised (Inc), drawn (Drw), stamped (Stm), and impressed (Imp).

Incising is best done using a thin, sharp, flint chip in a cutting motion when the matrix has dried to the semi-hard or "leathery" state and the vessel may be safely handled. A fine line of uniform depth results. If such a tool is used on soft clay, the line, though fine, becomes a cut having a varying depth.

"Drawing" is done with a sharply pointed stick or bone when the matrix has firmed - much as one uses a pencil. The line will be much bolder and furrow-like than is the case for incising. The line appears to have been produced more by dragging than by cutting or scoring. This distinction is not to invent a new category, but to recognize a decided difference in aspect.

Stamping involves pressing a shaped tool repeatedly into a firmed matrix to produce discreet marks as opposed to continuous lines. The tool can be a blunt stick, hollow reed, or fingernail. This technique is taken here to include use of a pointed tool to produce "punctuation" marks which may be small round pits or triangular indentations that preserve the direction of the thrust. It would include use of multi-pointed tools or "rocker" stamps. Stamping was a primary method of decoration of the older Tchefunete ware of Louisiana (Shenkel, 1980).

Impressing is done by pressing a textured item, such as a woven fabric or a twisted or braided cord, into soft matrix.

The cartoons are annotated to indicate which method(s) appear to have been used, roughly as abbreviated above.

Rim Notching

The peculiar practice of cutting vee notches, usually into the inner edge of the rim, can be disassociated from the design construction in that some plain ware is notched, and some decorated ware is not notched. The cartoons are annotated to indicate presence of notching: FN = fine notching (spacing less than 5 mm, and CN (spacing greater than 5 mm and less than 10 mm) and VCN (spacing greater than 1 cm). A "-" indicates absence of notching. The notching typically is not visible in a direct side view of late period Goose Creek ware rims, while it is visible in the neighboring Rockport ware to the west (Suhum and Jelks, 1962) and also in early period (Goose Creek?) specimens. See below.

Shape of Rim Section

This attribute was given only casual attention in making the design catalog. A non-scaled rim section sketch is given when there is some aspect of the design or sherd that seemed to warrant such. Inside is usually to the left.
Other Documentation

Catalog Number (Cat. No.): This number was assigned in the order that sherds were examined; thus the numbers are not sequential after sorting according to Family.

Location: The county is always given, together with a brief topographic locator such as: HR, upper Greens Bayou. A standard site number is given where such is known.

Diameter and Thickness (D and T): Vessel diameter, measured in centimeters by a template, is given where possible. Many of the sherds were mounted or so small that diameter could not be measured. In this case, an estimate may be given using the symbols Sm (small), less than 14 cm; Md (medium), between 14 and 30 cm; Lg (large), greater than 30 cm. Thickness is that measured to the nearest millimeter.

Type: Only two taxonomic types based on matrix are used: Goose Creek (G.Cr.) for untempered, or Goose Creek, Sandy Paste (S.P.) if sand tempered, and San Jacinto (S.Jac.) if tempered with coarse grog. Frequently, the type had to be an estimate - the sherds were never broken as is often necessary to distinguish the San Jacinto type. Its presence is definitely understated; therefore, no analysis was made in which involved the distinction.

Refer: An Arabic numeral references the collection source Appendix A.

"Frag" beside a cartoon indicates fragment of an unknown larger design. The cover drawing illustrates sherds that contain only a fragment of a large construction. "R" indicates the rim.
DISCUSSION

Chronological Aspects (Aten, 1983)

Aten's extensive excavations in the Trinity Delta (Aten, 1983) established the beginning of the ceramic (or prehistoric) era in the Galveston Bay area at 100 AD. The ensuing 1700 years is divided into periods based on ceramic variations -relative ebb and flow of matrix types, i.e., temper. His Figure 12.2 gives attention to design constructions in the "Galveston Bay" area (Trinity River delta ?). Cartoons of the constructions for each period are shown. The use (or misuse) to be made of Aten's Figure 12.2 herein really has no justification other than that it is the only other synthesis known. The author has no idea whether the illustrations are exhaustive, or what governed his selections other than the implicit "found in this time period" aspect. Even so, the distribution of his illustrated constructions among the Families agrees well with the distribution for the cataloged specimens, as will be shown.

Table I is a matrix in which the 76 constructions of his Fig. 12.2 are classified into the Families used in the catalog. The tabulation shows statistically what his figure suggests visually: that the complex Families first appear in the Round Lake Period, beginning around 950 AD; that the relative distributions remain essentially constant thereafter; and that the single or multiple Horizontal Line Family is the most common (39 percent), followed by the Horizontal Line plus Opposing Diagonals Family, (25 percent). It should be recalled that the Round Lake and Old River Periods correspond respectively to the ascent and decline of the grog tempered Baytown or San Jacinto matrix type.

Aten's Figure 12.2 also suggests that punctation went out of style by the beginning of the Old River Period, around 1300 AD. Thus, we might tentatively conclude from Aten's Figure 12.2 that decoration composed solely of one to a few horizontal lines is not time diagnostic, that a large number of horizontal lines or more complex construction is diagnostic of the "second half" of the ceramic era, and, tentatively, that punctation is an early as opposed to late indicator. The figure also implies that decoration was very rare during the first few hundred years.

Chronological and Spatial Aspects - Catalog Collections

Baytown Area

The majority of the cataloged designs come from Source Collection 2 and 2a. These are marked "Baytown"; however, nearly all came from the shell middens surrounding Burnett Bay and the Brownwood Peninsula in particular. The Houston Archeological Society obtained one radiocarbon date on Rangia shell from the base of a "typical" midden 41 HR 618. This was 1500 AD+ 40. When corrected to charcoal equivalent (Aten, 1983) this becomes about 1300 AD and is right for the beginning of Aten's Old River Period 1350-1800 AD, or, say, the final 500 years.

While Aten probably did not contemplate statistical use of the data in his Figure 12.2, it is of interest to compare the percentages of specimens in the various catalog Families from Source Collection 2 and 2a and from Figure 12.2 for the Old River Period. This is shown in Table II.
The relative presence of the Families agrees surprisingly well; the major exception is that Family II, Horizontal plus one diagonal, is under-represented in Aten's selections, 3 percent vs. 22 percent. One wonders if this is significant? The tabulation also shows that Family I, Horizontal, is strongly represented in the final 500 years. Also, 14 specimens (11 percent) of the Baytown group, have punctation, and 8 of these are in Family I, Horizontal. This tends to confirm that the Horizontal Line, Family I, is very much a part of the late repertoire, and also that punctation is not necessarily an early indicator.

Lower Brazos Area

A total of 26 specimens from the Lower Brazos area, Source Collection (6), were cataloged, of which 12 were from the Dow Cleaver Site 41 BO 35. Aten (1971), found (somewhat tenuously) that pottery was introduced there about 500 AD. He placed the appearance of decoration very late, 1300 to 1800 AD, coincident with the final, Old River Period in the Trinity Delta. The percentage distribution of cataloged specimens among the Families for this site plus 6 specimens from the general area (Shy Pond, Oyster Creek) is given on Table III. The distribution of this small sample agrees well with that of Table II, for the same period at Baytown; however, the variety is more limited. Punctuation was present on 3 specimens out of 18.

One specimen from the Dow Cleaver site is particularly noteworthy (Family IX, Cat. Nos. 188 A, B, C, pg. 27). This is a partially reassembled rim on which the design construction changes at least five times, of which four are present as follows:

<table>
<thead>
<tr>
<th>Family</th>
<th>Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Horizontal</td>
</tr>
<tr>
<td>III</td>
<td>Horizontal plus opposing diagonals</td>
</tr>
<tr>
<td>I</td>
<td>Horizontal</td>
</tr>
<tr>
<td>I</td>
<td>Horizontal</td>
</tr>
</tbody>
</table>

Thus, we see on one vessel, presumably from the final period, two of the three most frequently occurring Families including much punctuation. Just how often this multiple design phenomenon occurs is thought provoking in that nearly all of the cataloged specimens are based on one sherd usually only 2 to 4 centimeters wide. Was the potter making a statement?

Addicks Area

The Addicks area, just west of Houston, is important for spatial representation. Major excavations were done in 1947 (Wheat, 1953). Thirteen specimens copied from photographs in the report are cataloged; seven more were tabulated, Table III, when clearer copy became available. The relative distributions correlate well with both the Baytown, Table II, and Dow Cleaver (Lower Brazos) table III collections except
for the strong presence of Family VII, Curves, at Addicks (60 percent of all curves). Might this be a temporal feature? Aten's Figure 12.2 shows only two definite curves; one is in the earliest Clear Lake period, 100-350 A.D. Further, Wheat's estimate for the ceramic period at Addicks, 600-1600, was based largely on presence of Tchefuncte sherds at a level where ceramics were already established. This beginning date now seems too late (Shenkel, 1980; Aten, 1976). Aten places similar finds in his Clear Lake period. Unfortunately, Wheat did not give a clear provenience for sherds; the curve specimens might have occurred in upper, late, levels. Even so the author has a suspicion that the Addicks pottery is at least in part earlier than the Baytown and Lower Brazos collections. There was a strong archaic horizon in the Addicks excavations.

Houston Area

Nineteen specimens were cataloged from the Alabanson Road site 41 HR 273, courtesy of Texas A&M University. These sherds are securely radiocarbon dated between 400 and 800 AD. Cartoons were made from TAMU's excellent drawings in order to show the designs in the same style as used for the rest of the catalog. The drawings do suggest that this group is different in aspect. The walls are thicker and rim notching (4 examples) are angular to and across the rim, i.e., visible in side view. Several specimens may be from the same vessel. Fifteen specimens fall into the Family I, Horizontal; nine of these are cord impressed with predominantly right hand twist, two-strand cords. One is in Family II and one is in Family III. Two are in Family VI, Double Diagonals. See Cat. Nos. 207 and 212, pg. 22 and 23. Specimen 212 is one of the most interesting in the entire catalog in that it appears to be an unbounded, free-form motif. The fabrics are all Goose Creek Sandy Paste or O'Neal.

The large presence of horizontal line decoration is entirely consistent with Aten's Figure 12.2 for the earliest pottery, and the cord impression method is confirmed as being used very early. The presence of sherds with both incised and cord impression suggest that cord marking may be a precursor of incising. There are only three other clearly cord-marked specimens in the catalog (Family VII, Cat. No. 3, 223, pg. 24, and Family I, Cat. No. 112, pg. 4), all of uncertain age.

Summation - Chronological and Spatial Aspects - Catalog Collections

What has been ventured is that the cataloged specimens from the Lower Brazos and Baytown/Galveston Bay collections are temporally "late" and the Addicks collection is "middle" or possibly early to the period 100-1800 AD. However, these mid to late time specimens fall into nearly all of the classification Families. The Alabanson Road specimens are definitely early and confirm that horizontal lines were a favored early motif. Even so, this Family also exemplifies the late period, though cord impressing may be an early method of application.

Thus, we cannot say, for example, that Family II was earlier than Family III or otherwise interpret the catalog classification scheme based on line elements present in terms of an "evolutionary" chronology. Neither do the catalog Families show significant differences in occurrence spatially, aside from the possible rarity of Family II in the Trinity delta and strong presence of Family VII at Addicks.
In short, absent a context, the gross sorting done for sake of organizing presentation in the catalog does not appear to have any diagnostic utility either spatially or temporally. The degree of resolution afforded by the Families is perhaps too coarse. The sameness over so long a time period is perplexing. Yet, in a larger sense it is enlightening.

Distribution by Families - Entire Catalog

Table IV shows the percentage of specimens in the nine Families for the entire catalog. The individual collections are placed as being early or late relative to about 1000 AD. Distributions for these two periods are shown. The Addicks (tenuously) and White Oak Alabanson collections were considered early, the remainder late. The high percentage of Family VII, Curves, in the early category may be a spatial bias from the Addicks collection. Also shown for comparative purposes is data from Aten's Fig. 12.2 for combined Goose Creek and San Jacinto wares for his (late) Round Lake and Old River Periods (post 950 AD). In general, the catalog data-set distribution correlates well with Aten's sampler. The one point of divergence is that Family II is under represented in Aten's sampler from the Trinity delta.

Distribution of Design Families by Vessel Sizes

Vessel diameter could be measured or estimated into size ranges on 169 specimens. The category "small" includes diameters through 14 cm (5.5 in.), "medium" includes greater than 14 cm through 30 cm (11.8 in.), and "large", greater than 30 cm. Surprisingly, only 9 percent of the decorated vessels are small, 45 percent are medium, and 46 percent are large. See Table V. One could have a field day making conjectures about the significance of this except that we do not have a statistical vessel size distribution for all vessels, i.e., plain plus decorated.

Family I, Horizontal Lines, is the most used for all sizes. Family III, Horizontal Plus Two Diagonals (often triangles) is next most popular for the medium size, and Family II, Horizontal Plus One Diagonal, is next most popular for large vessels. Large or medium vessels are significantly represented in all Families.

Some General Observations

Upper exterior designs nearly always have a margin between top of the decoration and the rim. About a dozen specimens have line elements that "bleed off" the rim. This is not peculiar to any geographic area.

Of all specimens having a rim, only 34 percent were notched. This proportion is approximate for all design Families, having a significant number of specimens. While not cataloged, many plain sherds examined were notched. One can conclude that the stimulus for the curious practice of notching was different from that for applying an exterior rim decoration.

Only four examples of interior incising were observed. One (Family VI, Cat. No. 175, pg. 22) consists of five diagonal lines near the rim of a sherd that is decorated with an alternating diagonal, four-line band around the exterior. Another (Family IX, Cat. No. 26, pg. 26) appears more organized and is in an odd, severely concave inward, peripheral segment of the vessel wall. A third (Family IX, Cat. No. 217, pg. 26) is puzzling in aspect. The first specimen is from the Lower Brazos (Dow Cleaver); the second is from the Lower San Jacinto River (Lost Lake), the
third is from San Jacinto Bay, and the fourth, Cat. No. 27, pg. 26, is from Burnett Bay. Interior incising has been reported for sherds from Sabine Lake, Bolivar Peninsula, and Upper Galveston Bay (Neyland, 1971).

An atypical mode of decoration appears on one sherd from the Lower Brazos Area (Family II, Cat. No. 192, pg. 12). An overall textured effect was achieved by scraping with a deeply serrated tool in alternating directions or else the closely-spaced, broad lines may have been drawn. A somewhat similar treatment is shown in Wheat, 1953, Plate 33,m, and in Hall, 1981, Figure 52, Group 5. Significantly all three examples are from the northwestern frontier of the Goose Creek ware range.

The "Potter's Mark" Question

The idea is sometimes put forth that the designs represent potters' marks, i.e., identified the craftsman. There is no way to prove or disprove this conjecture. Suppose that all of the designs in the catalog were very similar; we would have to conclude that a great many potters in many locales over a thousand years or more used the same ideas. This is the case in the broadest sense. Suppose a few examples of a certain specific motif from different vessels in the same locale were present. Then we might suspect that one potter was using a favorite design, or one to identify her band, or her lineage, provided other attributes of the sherd compared favorably. But, aside from the non-diagnostic horizontal line, there is no convincing evidence of this. (The Family II specimens on page 9 of the catalog are suspect. This motif, within Family II, is peculiar to the Baytown area.) Further, over one-third of all the cataloged designs consist only of horizontal lines. Thus, it seems unlikely that a given design construction was an individual's or band's mark.

On Symbolic Meanings

The Goose Creek designs are not pictorial. It is impossible to read any resemblance into them of something that exists in nature. With one exception, there are no true motifs incorporated into the designs as recognizable, separable entities, possibly symbolic of something. The exception is the triangle; however, the triangle is not used as an unattached motif, i.e., free from a common horizontal.

The author believes the triangle was a discovery, a figure that emerged from attempts to embellish by adding an opposing set of diagonal lines. Thereafter, it was used premeditatively, if indeed not symbolically.

The triangle clearly appears in over forty specimens in the catalog. (Families III and V). It is usually equilateral in form with one corner down; the other two corners usually touch those of similar triangles on either side so as to form a continuous repeat. In one style there is a horizontal line bounding the downward points, thus forming a second set of corner upward triangles, but it is usually the base upward triangles that are singled out for hatchuring. In another style the lower horizontal line is not present so that the triangles appear to be pendant to the upper base line. See catalog pgs. 14 through 17.

This is not to say that simple geometric constructions cannot be symbolic. The Christian Cross and the Swastika are notable examples of highly symbolic geometric constructions if one is in on the secret. Nevertheless, there is nothing to suggest, beyond a reasonable doubt, that there is any symbolism in the Goose Creek constructions.
SUMMARY

Indians of Southeast Texas made a distinctive pottery, broadly known as Goose Creek ware, for nearly 2000 years. Some vessels were decorated. Decoration usually consisted of linear geometric constructions incised around, but seldom touching, the upper exterior rim. Present evidence suggests that initially the most common construction consisted of a few horizontal lines (parallel to the rim). The lines were formed by pressing a twisted fiber cord into soft clay and by incising. Beginning around 1000 AD, coincident with the ascent of grog tempering, the incised border designs became more complex, largely through an increase in the number of parallel horizontal lines and also the addition of diagonal lines either of one slope or of opposing slopes. Vertical lines, while used, were much less common as were curved lines. The equilateral triangle was recognized and became a common construction. As a motif, the triangle encloses a field which was often filled in with secondary hatchures. Punctuation was sometimes used, both early and late, to embellish a straight line or in substitution for a scribed line. Use of shaped tools for texturing by stamping was a very minor trait. The inner edge of the rim was often treated by radial notching, but this practice was not confined to pieces otherwise decorated. Plain ware was also noted. It is interesting that decoration appears to have been more commonly applied on large vessels than small.

The variety of repetitive border patterns that can be created with just the line classes "horizontal" and "diagonal" either singularly or in combination is very large. Indeed, when one is confronted with a large random selection of decorated Goose Creek potsherds the automatic eye scan process of searching for similarities becomes frustrating. Each specimen is distinct from the others yet there is a sameness. A way was sought for grouping of specimens that would enhance similarities for catalog presentation. Some success was achieved using the criteria of "line classes", i.e., solely horizontal line(s), horizontal line(s) plus diagonals of one slope, horizontals plus opposing diagonals, etc. Nine "Families" were defined. A sense of order appeared when the specimens were sorted into Families and then arranged within each in increasing order of complexity. This gross sorting method revealed sub-families; however, a finer sorting was not done except by association.

After the specimens were sorted according to this purely mechanical criteria, it was found that the Families were not spatially or temporally diagnostic. The percentage distribution of specimens among the various Families was similar for collections from several geographic areas.

It was ventured to place some collections temporally as being pre- or post-1000 A.D. When so separated, without regard to locale, the percentage distributions among the "most used" Families was as follows (see Table IV for complete data):

<table>
<thead>
<tr>
<th>Family</th>
<th>Pre 1000 AD</th>
<th>Post 1000 AD</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>56</td>
<td>35</td>
</tr>
<tr>
<td>II</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>III</td>
<td>8</td>
<td>21</td>
</tr>
<tr>
<td>VII</td>
<td>15</td>
<td>2</td>
</tr>
</tbody>
</table>

Percent of total represented:
(Number of specimens):

<table>
<thead>
<tr>
<th></th>
<th>Pre 1000 AD</th>
<th>Post 1000 AD</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Number of specimens):</td>
<td>(35)</td>
<td>(172)</td>
</tr>
</tbody>
</table>
The summary tabulation shows the dominance of the "horizontal lines only" decoration both early and late. It also shows the tendency to retain the horizontal line as the primary "clothes line" for the design construction. There appears to have been a growth in popularity of constructions using horizontal plus diagonal(s) at the expense of horizontal lines alone. The possibly early popularity of curves may really be a spatial bias from the Addicks collection.

If is concluded that the decoration per se, as considered here, admittedly without attention to the many other attributes of a sherd, is not diagnostic of time or place, then what further may we speculate? First, it is obvious that there was no major artistic breakthrough. Throughout over a millenia the potters were satisfied to use and exchange a very limited set of basic ideas. These were not a sedentary agricultural people. They were hunters and gatherers to the end, and much occupied with matters of survival. Pottery decoration was probably not regarded as a creative outlet. Was it just a perfunctory thing to do, in an accepted manner, without premeditation - a final step in the toil of forming pots?

Author's Note

I see now that when this project was begun, I subconsciously thought that in prehistoric time Houston would have been a vast distance from, say, Freeport, and that there should be clear differences in the way "artistic" things like pottery decoration were done over such distances! Now I see that Southeast Texas was really a small place and the inhabitants were well integrated - internally. I also was prepared to see stronger indications of an evolution - after all 1700 years is a very long time. But that is too much to ask absent some way to date a sherd found on eroding beach.

The catalog offers little to be distinguished in terms of miles or years. But it is a good sized sample of what to expect in the western Akokisa territory.

W.M.B.
December, 1989
Appendix A - Collection Sources

Reference (1)
Houston Museum of Natural Science. This is a surface collection made in the 1930s and early 1940s from sites in Harris County most of which are now destroyed. "Lower San Jacinto" means an extensive area of shell middens along Old River Bay and the former Lost Lake, west of the San Jacinto River.

Reference (2)
Private Collection. This surface collection, designated "Baytown", comes largely from the eroding and subsiding shell middens surrounding Burnett Bay. Site 41 HR 618 is typical. A radio carbon date of 1500 AD was obtained on shell from the base of this midden. Constant monitoring has resulted in a large recovery of both ceramics and lithics, some of which are Archaic.

Reference (3)
Private Collection. This surface collection comes from shell middens south of the Houston Ship Channel from Peggy's Lake and eastward to the Bay; also, San Jacinto Bay, Cedar Bayou, and Lake Stevenson (Smith Point). This collection included 21 specimens in the Horizontal Family which were not cataloged to avoid more extensive duplication.

Reference (4)
Wheat, J.B. (1953), River Basin Surveys Papers, No. 1. The Addicks Dam Site, Smithsonian Insitution. Most of the cartoons were made from photographs on Plates 32 and 33, where the design construction was clear. These plates include several specimens in the Horizontal Line Family similar to Catalog Nos. 11, 12, 50, and 74 which were not cataloged separately. Site 42 HR 2 is typical.

Reference (5)
Aten, L.(1983), Indians of the Upper Texas Coast. Cartoons were made from photographs on Figures 12.4, 12.5, and 12.6. It is not clear whether these specimens come from the Trinity Delta or Clear Lake (41 HR 84-85), in that some of the same sherds are included in a publication on the latter (Aten, 1976). Accordingly, the location is designated "Galveston Bay". Cartoons are not made from the cartoons in Fig. 12.2.

Reference (6)
Brazosport Museum, This collection is largely from the Dow Cleaver site, 41 BO 35, on the lower Brazos River. This site is believed to be pure Karankawan, but the pottery type is Goose Creek in nature as opposed to Rockport (two Rockport Incised were cataloged). The collection also includes specimens from Shy Pond, lower Oyster Creek, and Big Creek, a tributary of the Brazos, all within 10 miles or so.

Reference (7)
Texas A & M University, Department of Anthropology. This collection is from the extensive excavation of Site 41 HR 273, located on White Oak Bayou, near the Alabonson Road crossing. Drawings of the decorated sherds, to be included in a forthcoming report, were provided by Blaine Ensor, (TAMU).
REFERENCES

Ambler, J. Richard

Aten, Lawrence E.
1971 Archeological Excavations at the Dow-Cleaver Site, Brazoria County, Texas. Technical Bulletin No. 1, Texas Archeology, Salvage Project, University of Texas, Austin.
1976 Excavations at the Harris County Boys' School Cemetery. The Texas Archeological Society Special Publication No. 3.

Black, W. Marshall

Hall, Grant D.
1981 Allens Creek, Research Report No. 61, Texas Archeological Survey, University of Texas, Austin.

Hole, Frank (Editor)

Shenkel, J. Richard.

Neyland, Wayne B. and Aten, Lawrence E.

Suhm, Dee Ann and Jelks, Edward B.

Wheat, Joe Ben
<table>
<thead>
<tr>
<th>Calendar Yr. AD</th>
<th>Clear Lake 100-350</th>
<th>Mayes Island 350-600</th>
<th>Turtle Bay 600-950</th>
<th>Round Lake 950-1350</th>
<th>Old River 1350-1800</th>
<th>Orcoquisac</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family</td>
<td>Number of Specimens (Pct)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I Horizontal only</td>
<td>2 1 3 11 12 1 30 (39)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II Horizontal plus one diagonal</td>
<td>- - - 2 1 - 3 (4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III Horizontal plus opposing diagonals</td>
<td>- - - 11 8 - 19 (25)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV Horizontal plus vertical</td>
<td>- - - 5 4 - 9 (12)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V Horizontal plus opposing diagonals plus vertical</td>
<td>- - - 1 2 - 3 (4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI Opposing diagonals</td>
<td>- - - - 3 - 3 (4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VII Curves</td>
<td>1 - - 1 1 - 3 (4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIII Vertical only</td>
<td>- - - - - 1 1 (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IX Miscel.</td>
<td>- - - 1 4 - 5 (6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3 1 3 32 35 2 76 (100)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family</td>
<td>Baytown Collection 2, 2a*</td>
<td>Old River Period Aten's Fig. 12.2 (Table 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. (Pct)</td>
<td>No. (Pct)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Horizontal only</td>
<td>36 (29)</td>
<td>12 (34)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>Horizontal plus one diagonal</td>
<td>27 (22)</td>
<td>1 (3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>Horizontal plus opposing diagonals</td>
<td>25 (20)</td>
<td>8 (23)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>Horizontal plus vertical</td>
<td>10 (8)</td>
<td>4 (11)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Horizontal plus opposing diagonal plus vertical</td>
<td>3 (2)</td>
<td>2 (6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>Opposing diagonals</td>
<td>8 (7)</td>
<td>3 (8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td>Curves</td>
<td>2 (1)</td>
<td>1 (3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VIII</td>
<td>Vertical only</td>
<td>5 (4)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IX</td>
<td>Miscellaneous</td>
<td>7 (6)</td>
<td>4 (11)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

123 (100) 35 (100)

* Includes specimens from Source Collection 1 marked "Lower San Jacinto". Only a few miles separate the areas.
TABLE III - Examination of Source Collection 6 (Dow Cleaver)* and Addicks Collections 1, 4 In Terms of Design Families Used in Catalog

<table>
<thead>
<tr>
<th>Family</th>
<th>Dow Cleaver Collection 6*</th>
<th>Addicks Collections 1, 5**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. (Pet)</td>
<td>No. (Pet)</td>
</tr>
<tr>
<td>I Horizontal only</td>
<td>5 (31)</td>
<td>7 (35)</td>
</tr>
<tr>
<td>II Horizontal plus one diagonal</td>
<td>3 (18)</td>
<td>2 (10)</td>
</tr>
<tr>
<td>III Horizontal plus opposing diagonals</td>
<td>4 (25)</td>
<td>3 (15)</td>
</tr>
<tr>
<td>IV Horizontal plus vertical</td>
<td>2 (13)</td>
<td>1 (5)</td>
</tr>
<tr>
<td>V Horizontal plus opposing diagonals plus vertical</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>VI Opposing diagonals</td>
<td>-</td>
<td>1 (5)</td>
</tr>
<tr>
<td>VII Curves</td>
<td>-</td>
<td>6 (30)</td>
</tr>
<tr>
<td>VIII Vertical only</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IX Miscellaneous</td>
<td>2 (13)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>16 (100)</td>
<td>20 (100)</td>
</tr>
</tbody>
</table>

* Includes Shy Pond and Oyster Creek specimens.

** Tabulation contains seven additional specimens not in Catalog:
 I + 3; II, III, VI and VII + 1 each.
Table IV Distribution of All Cataloged Specimens Among Classification Families

<table>
<thead>
<tr>
<th>Family</th>
<th>Pre-1000 AD</th>
<th>Post 1000 AD</th>
<th>Aten's Figure 12.2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. (Pct.)</td>
<td>No. (Pct.)</td>
<td>No. (Pct.)</td>
</tr>
<tr>
<td>I</td>
<td>22 (56)</td>
<td>81** (35)</td>
<td>24 (35)</td>
</tr>
<tr>
<td>II</td>
<td>3 (8)</td>
<td>38 (16)</td>
<td>3 (4)</td>
</tr>
<tr>
<td>III</td>
<td>4 (10)</td>
<td>49 (21)</td>
<td>19 (28)</td>
</tr>
<tr>
<td>IV</td>
<td>1 (3)</td>
<td>16 (7)</td>
<td>9 (13)</td>
</tr>
<tr>
<td>V</td>
<td>-</td>
<td>5 (2)</td>
<td>3 (4)</td>
</tr>
<tr>
<td>VI</td>
<td>3 (8)</td>
<td>15 (6)</td>
<td>3 (4)</td>
</tr>
<tr>
<td>VII</td>
<td>6 (15)</td>
<td>4 (2)</td>
<td>2 (3)</td>
</tr>
<tr>
<td>VIII</td>
<td>-</td>
<td>6 (3)</td>
<td>1 (1)</td>
</tr>
<tr>
<td>IX</td>
<td>-</td>
<td>17 (7)</td>
<td>5 (7)</td>
</tr>
<tr>
<td></td>
<td>39 (100)</td>
<td>231 (100)</td>
<td>69 (100)</td>
</tr>
</tbody>
</table>

* Post "Turtle Bay". Pre 950 AD distribution is: Family I 6 (86%) and Family VII 1 (14%).

** Includes 21 specimens from Reference 3 which were observed but not cataloged to reduce duplication.
Table V Distribution of Design Families Among Vessel Sizes

<table>
<thead>
<tr>
<th>Family</th>
<th>Small 14 cm. D No.</th>
<th>Medium 14 to 30 cm. No.</th>
<th>Large 30 cm. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Horizontal only</td>
<td>6</td>
<td>22</td>
<td>25</td>
</tr>
<tr>
<td>II Horizontal plus one diagonal</td>
<td>1</td>
<td>11</td>
<td>17</td>
</tr>
<tr>
<td>III Horizontal plus opposing diagonals</td>
<td>6</td>
<td>23</td>
<td>12</td>
</tr>
<tr>
<td>IV Horizontal plus vertical</td>
<td>1</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>V Horizontal opposing diagonals plus vertical</td>
<td>-</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>VI Opposing diagonals</td>
<td>-</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>VII Curve</td>
<td>-</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>VIII Vertical only</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>IX Miscellaneous</td>
<td>1</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL</td>
<td>16 (9%)</td>
<td>76 (45%)</td>
<td>77 (46%)</td>
</tr>
</tbody>
</table>
Fig. 1 Primary and secondary lines and alternation

Fig. 2 Examples of unused motifs
FAMILY I

HORIZONTAL ONLY
CATALOG
FAMILY I
HORIZONTAL ONLY

CAT NO. 211
LOCATION H.R. White Oak (Alabama)
TYPE S.P. DIA. 1 T mm. 4
METHOD Inc. NOTCH — REFER 7.

CAT NO. 140
LOCATION H.R. Baytown
TYPE S.P. DIA Lg. T mm. 5
METHOD Inc. NOTCH VEN. REFER 2a

CAT NO. 50
LOCATION H.R. Baytown
TYPE S.P. DIA Lg. T mm. 5
METHOD Inc. NOTCH — REFER 2a

CAT NO. 209
LOCATION H.R. White Oak (Alabama)
TYPE S.P. DIA Lg. T mm. 4
METHOD Inc. NOTCH — REFER 7.

CAT NO. 209
LOCATION H.R. White Oak (Alabama)
TYPE S.P. DIA Lg. T mm. 4
METHOD Inc. NOTCH — REFER 7.

CAT NO. 39
LOCATION H.R. Baytown
TYPE S.P. DIA Md. T mm. 5
METHOD Inc. NOTCH — REFER 2.

CAT NO. 205
LOCATION H.R. White Oak (Alabama)
TYPE S.P. DIA Lg. T mm. 7
METHOD Inc. NOTCH — REFER 7.

CAT NO. 126
LOCATION H.R. White Oak (Alabama)
TYPE S.P. DIA Lg. T mm. 7
METHOD Inc. NOTCH — REFER 7.

CAT NO. 126
LOCATION H.R. White Oak (Alabama)
TYPE S.P. DIA Lg. T mm. 7
METHOD Inc. NOTCH — REFER 7.

CAT NO. 126
LOCATION H.R. White Oak (Alabama)
TYPE S.P. DIA Lg. T mm. 7
METHOD Inc. NOTCH — REFER 7.
FAMILY I
HORIZONTAL ONLY

CAT NO. 264
LOCATION: H.R. White Oak (Albemarle)
TYPE: S.P. DIA. 24 T.mm
METHOD: Inc/Exc. NOTCH REFER 7

CAT NO. 133
LOCATION: H.R. White Oak (Albemarle)
TYPE: S.P. DIA. 24 T.mm
METHOD: Card. ENT. NOTCH REFER 7

CAT NO. 174
LOCATION: B.R. Lower Branch (Doug C.)
TYPE: Gen. DIA. 24 T.mm
METHOD: Inc. ENT. NOTCH REFER 7

CAT NO. 309
LOCATION: H.R. Blackbough (W. C.)
TYPE: S.B. DIA. 24 T.mm
METHOD: Inc. ENT. NOTCH REFER 7

CAT NO. 175
LOCATION: B.R. Lower Branch (Doug C.)
TYPE: Gen. DIA. 24 T.mm
METHOD: Inc. ENT. NOTCH REFER 7

CAT NO. 176
LOCATION: H.R. White Oak (Albemarle)
TYPE: S.P. DIA. 24 T.mm
METHOD: Card. ENT. NOTCH REFER 7

CAT NO. 12
LOCATION: H.R. Lower Branch (Albemarle)
TYPE: S.B. DIA. 24 T.mm
METHOD: Inc. ENT. NOTCH REFER 7

CAT NO. 191
LOCATION: B.R. Lower Branch (Doug C.)
TYPE: Gen. DIA. 24 T.mm
METHOD: Inc. ENT. NOTCH REFER 7

CAT NO. 132
LOCATION: H.R. White Oak (Albemarle)
TYPE: S.P. DIA. 24 T.mm
METHOD: Card. ENT. NOTCH REFER 7

CAT NO. 12
LOCATION: H.R. Lower Branch (Albemarle)
TYPE: S.B. DIA. 24 T.mm
METHOD: Inc. ENT. NOTCH REFER 7

(5)
FAMILY I
HORIZONTAL ONLY

CAT NO. 72
LOCATION: HR Baytown
TYPE: G.C.
DIA: 19.1
L mm: 5
METHOD: Inc
NOTCH: REFER 2

CAT NO. 143
LOCATION: HR Baytown
TYPE: G.C.
DIA: 57
L mm: 6
METHOD: Inc
NOTCH: REFER 2a

CAT NO. 7
LOCATION: HR Upper Green 19
TYPE: G.C.
DIA: 32.1
L mm: 4
METHOD: Inc
NOTCH: REFER 1

CAT NO. 167
LOCATION: HR Baytown
TYPE: G.C.
DIA: 60.6
L mm: 5
METHOD: Inc
NOTCH: REFER 2a

CAT NO. 124
LOCATION: HR Baytown
TYPE: G.C.
DIA: 40.1
L mm: 8
METHOD: Inc
NOTCH: REFER 2a

CAT NO. 33
LOCATION: HR Baytown
TYPE: G.C.
DIA: 22.6
L mm: 4
METHOD: Inc
NOTCH: REFER 2

CAT NO. 3L
LOCATION: HR Addicks 3
TYPE: G.C.
DIA: 32.1
L mm: 6
METHOD: Inc
NOTCH: REFER 1

CAT NO. 187
LOCATION: F.B. Layer Stones (Big Creek)
TYPE: G.C.
DIA: 16.6
L mm: 5
METHOD: Inc
NOTCH: REFER 6
FAMILY I
HORIZONTAL ONLY

SCALE. Cm

CAT. NO. 159
LOCATION: NE. Boyd Lake
TYPE: G. Gr
DIAMETER: 18 cm, 1 mm

CAT. NO. 233
LOCATION: NE. Sanford Reservoir
TYPE: G. Gr
DIAMETER: 18 cm, 1 mm

CAT. NO. 218
LOCATION: CH. Lake Stevenson
TYPE: G. Gr
DIAMETER: 38 cm, 1 mm

CAT. NO. 190
LOCATION: NE. Lake Powell
TYPE: G. Gr
DIAMETER: 56 cm, 1 mm
FAMILY II

HORIZONTAL + ONE DIAGONAL
FAMILY II
HORIZONTAL + ONE DIAGONAL

SCALE. cm

CAT NO. 28
LOCATION: H.R. Baytown
TYPE: Inc, Dia: 36 cm, T mm: 5
METHOD: Inc, NOTCH: REFER

SCALE. cm

CAT NO. 4B
LOCATION: H.R. Baytown
TYPE: G.C., Dia: 29 cm, T mm: 5
METHOD: Inc, NOTCH: REFER

SCALE. cm

CAT NO. 48
LOCATION: H.R. Baytown
TYPE: G.C., Dia: 29 cm, T mm: 5
METHOD: Inc, NOTCH: REFER

SCALE. cm

CAT NO. 6B
LOCATION: H.R. Baytown
TYPE: G.C., Dia: 29 cm, T mm: 5
METHOD: Inc, NOTCH: REFER

SCALE. cm

CAT NO. 136
LOCATION: H.R. Baytown
TYPE: Inc, Dia: 38 cm, T mm: 5
METHOD: Inc, NOTCH: REFER

SCALE. cm

CAT NO. 136
LOCATION: H.R. Baytown
TYPE: Inc, Dia: 38 cm, T mm: 5
METHOD: Inc, NOTCH: REFER

SCALE. cm
FAMILY II
HORIZONTAL + ONE DIAGONAL
FAMILY II
HORIZONTAL + ONE DIAGONAL

SCALE: Cm

CAT NO: 57
LOCATION: H.R. Baytown
TYPE: G.C.
DIA: 1/2
T mm: 4
METHOD: Ino. NOTCH - REFER 2

SCALE: Cm

CAT NO: 104
LOCATION: H.R. Baytown
TYPE: G.C.
DIA: 1/2
T mm: 5
METHOD: Ino. NOTCH - REFER 5

SCALE: Cm

CAT NO: 204
LOCATION: H.R. White Oak (Alabama)
TYPE: G.C.
DIA: 1/2
T mm: 4
METHOD: Ino. NOTCH - REFER 7

SCALE: Cm

CAT NO: 56
LOCATION: H.R. Baytown
TYPE: G.C.
DIA: 1/2
T mm: 4
METHOD: Ino. NOTCH - REFER 2

SCALE: Cm

CAT NO: 10
LOCATION: H.R. Upper Greens 1B.
TYPE: G.C.
DIA: 1/2
T mm: 4
METHOD: Ino. NOTCH - REFER 1

SCALE: Cm

CAT NO: 78
LOCATION: H.R. Baytown
TYPE: G.C.
DIA: 1/2
T mm: 5
METHOD: Ino. NOTCH - REFER 2

SCALE: Cm

CAT NO: 222
LOCATION: H.R. Peggy Lake
TYPE: G.C.
DIA: 1/2
T mm: 5
METHOD: Ino. NOTCH - REFER 3

SCALE: Cm

CAT NO: 137
LOCATION: H.R. Baytown
TYPE: G.C.
DIA: 1/2
T mm: 5
METHOD: Ino. NOTCH 1/2 - REFER 3

Scarred.
FAMILY III

HORIZONTAL + OPPOSING DIAGONALS
FAMILY III
HORIZONTAL + OPPOSING DIAGONAL

SCALE, cm

CAT NO. 218
LOCATION H.Raytown
TYPE G.Cr
METHOD Inc.

SCALE, cm

CAT NO. 43
LOCATION H.Raytown
TYPE G.Cr
METHOD Inc.

SCALE, cm

CAT NO. 41
LOCATION H.Raytown
TYPE G.Cr
METHOD Inc.

SCALE, cm

CAT NO. 48
LOCATION H.Raytown
TYPE G.Cr
METHOD Inc.

SCALE, cm

CAT NO. 5
LOCATION H.R. Lomax, San. Loe. R.
TYPE G.Cr
METHOD Inc.

SCALE, cm

CAT NO. 7
LOCATION H.R. Lomax, San. Loe. R.
TYPE G.Cr
METHOD Inc.

SCALE, cm

CAT NO. 7
LOCATION H.R. Lomax, San. Loe. R.
TYPE G.Cr
METHOD Inc.

SCALE, cm

CAT NO. 7
LOCATION H.R. Lomax, San. Loe. R.
TYPE G.Cr
METHOD Inc.

SCALE, cm

CAT NO. 7
LOCATION H.R. Lomax, San. Loe. R.
TYPE G.Cr
METHOD Inc.

(15)
FAMILY III
HORIZONTAL + OPPOSING DIAGONAL

CAT NO. 186
LOCATION: PB Lower Sespe (10749, 1977)
TYPE: G: Cr
METHOD: Inc
NOTCH: CH
REFER: 6

CAT NO. 229
LOCATION: HR Ten Lakes to Toy
TYPE: G: Cr
METHOD: Inc/Dow NOTCH
REFER: 5

CAT NO. 187
LOCATION: PB Lower Sespe (10750, 1977)
TYPE: G: Cr
METHOD: Inc
NOTCH: CH
REFER: 6

CAT NO. 225
LOCATION: HR Peggy Lake
TYPE: G: Cr
METHOD: Inc/Dow NOTCH
REFER: 5

CAT NO. 222
LOCATION: HR Peggy Lake
TYPE: G: Cr
METHOD: Inc/Dow NOTCH
REFER: 5

CAT NO. 185
LOCATION: HR Peggy Lake
TYPE: G: Cr
METHOD: Inc/Dow NOTCH
REFER: 5

CAT NO. 179
LOCATION: HR Peggy Lake
TYPE: G: Cr
METHOD: Inc/Dow NOTCH
REFER: 5

CAT NO. 221
LOCATION: HR Peggy Lake
TYPE: G: Cr
METHOD: Inc/Dow NOTCH
REFER: 5

CAT NO. 177
LOCATION: PB Lower Sespe (10751, 1977)
TYPE: G: Cr
METHOD: Inc
NOTCH: CH
REFER: 6

CAT NO. 176
LOCATION: HR Alchitka
TYPE: G: Cr
METHOD: Dow NOTCH
REFER: 5
FAMILY III
HORIZONTAL + OPPOSING DIAGONAL

SCALE: Cm

CAT NO: 109
LOCATION: Oak Bay (Tryon Delta?)
TYPE: G.C.
DIA: 16 Cm
T mm: 5
METHOD: Draw/ Inc. NOTCH: REFER

CAT NO: 126
LOCATION: Oak Bay (Tryon Delta?)
TYPE: G.C.
DIA: 16 Cm
T mm: 5
METHOD: Draw/ Inc. NOTCH: REFER

CAT NO: 127
LOCATION: Red Oak
TYPE: G.C.
DIA: 16 Cm
T mm: 5
METHOD: Draw/ Inc. NOTCH: REFER

CAT NO: 128
LOCATION: Red Oak
TYPE: G.C.
DIA: 16 Cm
T mm: 5
METHOD: Draw/ Inc. NOTCH: REFER

CAT NO: 129
LOCATION: Oak Bay (Tryon Delta?)
TYPE: G.C.
DIA: 16 Cm
T mm: 5
METHOD: Draw/ Inc. NOTCH: REFER

CAT NO: 130
LOCATION: Oak Bay (Tryon Delta?)
TYPE: G.C.
DIA: 16 Cm
T mm: 5
METHOD: Draw/ Inc. NOTCH: REFER

CAT NO: 131
LOCATION: Oak Bay (Tryon Delta?)
TYPE: G.C.
DIA: 16 Cm
T mm: 5
METHOD: Draw/ Inc. NOTCH: REFER

CAT NO: 132
LOCATION: Oak Bay (Tryon Delta?)
TYPE: G.C.
DIA: 16 Cm
T mm: 5
METHOD: Draw/ Inc. NOTCH: REFER
FAMILY III

HORIZONTAL + OPPOSING DIAGONAL

CAT NO. 749
LOCATION: ANSTEAN, CAPEL POYNT
TYPE: "X" XEC
DIA: 16 CM T.MM
METHOD: Inc NOTCH RefE
FAMILY IV
HORIZONTAL + VERTICAL
FAMILY V

HORIZONTAL + OPPOSING DIAGONALS + VERTICAL
FAMILY V
HORIZONTAL + OPPOSING DIAGONALS + VERTICAL

CAT NO. GI
LOCATION HR. Baytown
TYPE G.CC
DIA 2.9
T.mm 6
METHOD Dc NOTCH FN REFER 2

SCALE: cm 0 3 R

CAT NO. 86
LOCATION HR. Baytown
TYPE G.CC
DIA 2.9
T.mm 4
METHOD Dc NOTCH FN REFER 2

SCALE: cm 0 3 R

CAT NO. 146
LOCATION HR. Baytown
TYPE G.CC
DIA 2.9
T.mm 1
METHOD Dc NOTCH FN REFER 2

SCALE: cm 0 3 R

CAT NO. 119
LOCATION HR. Cedar Bayou
TYPE G.CC
DIA 2.9
T.mm 4
METHOD Dc NOTCH FN REFER 3

SCALE: cm 0 3 R

CAT NO. 122
LOCATION HR. Baytown
TYPE G.CC
DIA 2.9
T.mm 1
METHOD Dc NOTCH FN REFER 2A
FAMILY VI

OPPOSING DIAGONALS
FAMILY VI
OPPOSING DIAGONALS

CAT. NO. 193
LOCATION: ED
TYPE: DIA 30
METHOD: Inc NOTCH
REFER 6

CAT. NO. 194
LOCATION: ED
TYPE: DIA 29
METHOD: Inc NOTCH
REFER 7

CAT. NO. 195
LOCATION: Ed
TYPE: DIA 28
METHOD: Inc NOTCH
REFER 8

SCALE, Cm

CAT. NO. 196
LOCATION: ED
TYPE: DIA 27
METHOD: Inc NOTCH
REFER 9

SCALE, Cm
FAMILY VII

CURVES
FAMILY VIII
VERTICAL ONLY

SCALE: cm
0
3
C
R

CAT NO 136
LOCATION: HR. Baytown
TYPE: G, Cr
DIA: 6.9
Tmm: 5
METHOD: Deep Cut NOTCH
REFER: 2a

SCALE: cm
0
3
R

CAT NO 140
LOCATION: HR. Baytown
TYPE: Stone
DIA: 6.9
Tmm: 4
METHOD: Inc
NOTCH
REFER: 2a

SCALE: cm
0
3
Frag.

CAT NO 144
LOCATION: HR. Baytown
TYPE: G, Cr
DIA: 6.9
Tmm: 5
METHOD: Inc
NOTCH
REFER: 2a

SCALE: cm
0
3
Miss.

CAT NO 146
LOCATION: HR. Baytown
TYPE: G, Cr
DIA: 6.9
Tmm: 5
METHOD: Inc
NOTCH
REFER: 2a

SCALE: cm
0
3

CAT NO 148
LOCATION: HR. Baytown
TYPE: Stone
DIA: 6.9
Tmm: 4
METHOD: Inc
NOTCH
REFER: 2a

SCALE: cm
0
3
R Missing

CAT NO 164
LOCATION: HR. Baytown
TYPE: G, Cr
DIA: 6.9
Tmm: 6
METHOD: Inc
NOTCH
REFER: 2a

SCALE: cm
0
3

CAT NO 149
LOCATION: HR. Baytown
TYPE: G, Cr
DIA: 6.9
Tmm: 4
METHOD: Inc
NOTCH
REFER: 2a

SCALE: cm
0
3

CAT NO 118
LOCATION: Gulf Bay (Cape St. Ignatius)
TYPE: Inc
DIA: 6.9
Tmm: 3
METHOD: Inc
NOTCH
REFER: 5
FAMILY IX

MISCELLANEOUS
SUPPLEMENT NO. 1

After the foregoing study had been compiled two additional collections became available. One, Collection 9, is from surface in the Trinity delta. The other, Collections 8 and 10, are from excavations largely in the San Bernard River drainage. These are cataloged in the following pages intermixed by Families.

The distributions among Families is given in the following table, along with a recap of the Baytown Collection 2, 2a (Table II) and Aten's Figure 12.2 (Table IV) which may also be largely from the Trinity delta.

<table>
<thead>
<tr>
<th>Family</th>
<th>San Bernard Coll. 8, 10</th>
<th>Trinity Delta Coll. 9</th>
<th>Aten Fig. 12.2</th>
<th>Baytown Coll. 2, 2a</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>1 (13)</td>
<td>7 (32)</td>
<td>30 (39)</td>
<td>36 (29)</td>
</tr>
<tr>
<td>II</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>3 (4)</td>
<td>27 (22)</td>
</tr>
<tr>
<td>III</td>
<td>2 (25)</td>
<td>10 (45)</td>
<td>19 (25)</td>
<td>25 (20)</td>
</tr>
<tr>
<td>IV</td>
<td>2 (25)</td>
<td>2 (9)</td>
<td>9 (12)</td>
<td>10 (8)</td>
</tr>
<tr>
<td>V</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>3 (4)</td>
<td>3 (2)</td>
</tr>
<tr>
<td>VI</td>
<td>0 (0)</td>
<td>1 (5)</td>
<td>3 (4)</td>
<td>8 (7)</td>
</tr>
<tr>
<td>VII</td>
<td>1 (12)</td>
<td>1 (5)</td>
<td>3 (4)</td>
<td>2 (1)</td>
</tr>
<tr>
<td>VIII</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>1 (1)</td>
<td>5 (4)</td>
</tr>
<tr>
<td>IX</td>
<td>2 (25)</td>
<td>1 (4)</td>
<td>5 (7)</td>
<td>7 (6)</td>
</tr>
</tbody>
</table>

The additional Trinity delta collection supports a tentative conclusion that Family II, Horizontal plus One Diagonal, was not a favored construction there, whereas it was in the nearby Baytown area. This collection included the only known "pot handle", Catalog No. 258, page S-4.

Constructions in the small "San Bernard River" collection blend in well. However, the style of rim notching does not. Both plain and decorated rim sherds are frequently double notched - on both inside and outside giving a ruffled effect. A prominent cross notch, somewhat sawtooth-like, is also common. Many sherds show texturing from slightly serrated scraper marks. (See text page 12.) This pottery would appear to be only distantly related to that of the Galveston Bay tradition (Site Nos. 41 FB 46, 49; WH 3, 83; MG 50, 52).
Appendix A - Collection Sources
(Continued)

Reference (8)
Collection from site 41 WH 12, in the care of Joe Hudgins. This earth midden site is on Peach Creek near Hungerford, TX. It was tested by the Houston Archeological Society.

Reference (9)
Private Collection. This collection comes from sites in the San Bernard River drainage, and Caney Creek in Wharton County, and also Matagorda County as indicated in the catalog.

Reference (10)
Private Collection. This surface collection comes largely from sites 41 CH 20, 65, 169, 40, 87, and 36 on Old River Lake in the Trinity delta.
I Horizontal Only

CAT NO. 247
LOCATION: HR Trinity Delta
TYPE: G Cr 5P
DIA: 30 cm
T mm: 7
METHOD: Inc
NOTCH: CN
REFER: 9

CAT NO. 248
LOCATION: HR Trinity Delta
TYPE: G Cr 5P
DIA: 22 cm
T mm: 9
METHOD: Inc
NOTCH: CN
REFER: 9

CAT NO. 249
LOCATION: HR Trinity Delta
TYPE: S Loc
DIA: 69 cm
T mm: 7
METHOD: Inc
NOTCH: CN
REFER: 9

CAT NO. 250
LOCATION: HR Trinity Delta
TYPE: S Loc
DIA: 14 cm
T mm: 7
METHOD: Inc
NOTCH: CN
REFER: 9

CAT NO. 251
LOCATION: MG Casey Creek (Plage)
TYPE: G Cr 5P
DIA: 23 cm
T mm: 9
METHOD: Inc
NOTCH: CN
REFER: 9

CAT NO. 252
LOCATION: HR Trinity Delta
TYPE: S Loc
DIA: 14 cm
T mm: 7
METHOD: Inc
NOTCH: CN
REFER: 9

CAT NO. 253
LOCATION: HR Trinity Delta
TYPE: S Loc
DIA: 69 cm
T mm: 7
METHOD: Inc
NOTCH: CN
REFER: 9

CAT NO. 254
LOCATION: HR Trinity Delta
TYPE: S Loc
DIA: 16 cm
T mm: 7
METHOD: Inc
NOTCH: CN
REFER: 9

S-1
II Horizontal + One Diagonal

III Horizontal plus Opposing Diagonals

CAT NO. 244
LOCATION: CA Salinar Pano
TYPE: Gt F, P, Dia 18 cm, T mm 7-8
METHOD: Inc. NOTCH ? REFER 11

CAT NO. 249
LOCATION: CA Salinar Pano
TYPE: Gt F, P, Dia 18 cm, T mm 7
METHOD: Inc. NOTCH 4 REFER 13

CAT NO. 241
LOCATION: CA Salinar Pano
TYPE: Gt F, P, Dia 18 cm, T mm 7
METHOD: Inc. NOTCH 4 REFER 13

CAT NO. 238
LOCATION: CA Salinar Pano
TYPE: Gt F, P, Dia 18 cm, T mm 7
METHOD: Inc. NOTCH 4 REFER 13

CAT NO. 234
LOCATION: CA Salinar Pano
TYPE: Gt F, P, Dia 18 cm, T mm 7
METHOD: Inc. NOTCH 4 REFER 13

SCALE: Cm

S-2
II Horizontal plus Vertical

CAT NO. 237
LOCATION: WM. Trangler, Peach Cr.
TYPE: Reen T
DIA: 30 cm
T.mm: 4
METHOD: Inc
NOTCH: VIF
REFER: 9

CAT NO. 235
LOCATION: WM. Trangler, Peach Cr.
TYPE: Reen T
DIA: 30 cm
T.mm: 4
METHOD: Inc
NOTCH: VIF
REFER: 9

CAT NO. 238
LOCATION: Magnolia Creek (Rawalton)
TYPE: G: Gc
DIA: 10 cm
T.mm: 5
METHOD: Inc
NOTCH: E/F
REFER: 9

CAT NO. 239
LOCATION: Magnolia Creek (Rawalton)
TYPE: G: Gc
DIA: 10 cm
T.mm: 5
METHOD: Inc
NOTCH: E/F
REFER: 9

SCALE.Cm
0 1 2 3

CAT NO. 236
LOCATION: WM. Hanson, Peach Creek
TYPE: G: Gc
DIA: 28 cm
T.mm: 4
METHOD: Inc
NOTCH: VIF
REFER: 9

CAT NO. 239
LOCATION: WM. Trangler, Peach Cr.
TYPE: Reen T
DIA: 30 cm
T.mm: 4
METHOD: Inc
NOTCH: VIF
REFER: 9

CAT NO. 235
LOCATION: WM. Trangler, Peach Cr.
TYPE: Reen T
DIA: 30 cm
T.mm: 4
METHOD: Inc
NOTCH: VIF
REFER: 9

II Opposing Diagonals

II Curve

SCALE.Cm
0 1 2 3

CAT NO. 237
LOCATION: WM. Trangler, Peach Cr.
TYPE: Reen T
DIA: 30 cm
T.mm: 4
METHOD: Inc
NOTCH: VIF
REFER: 9

CAT NO. 235
LOCATION: WM. Trangler, Peach Cr.
TYPE: Reen T
DIA: 30 cm
T.mm: 4
METHOD: Inc
NOTCH: VIF
REFER: 9

SCALE.Cm
0 1 2 3

CAT NO. 236
LOCATION: WM. Hanson, Peach Creek
TYPE: G: Gc
DIA: 28 cm
T.mm: 4
METHOD: Inc
NOTCH: VIF
REFER: 9

CAT NO. 239
LOCATION: WM. Trangler, Peach Cr.
TYPE: Reen T
DIA: 30 cm
T.mm: 4
METHOD: Inc
NOTCH: VIF
REFER: 9

CAT NO. 235
LOCATION: WM. Trangler, Peach Cr.
TYPE: Reen T
DIA: 30 cm
T.mm: 4
METHOD: Inc
NOTCH: VIF
REFER: 9

SCALE.Cm
0 1 2 3

CAT NO. 236
LOCATION: WM. Hanson, Peach Creek
TYPE: G: Gc
DIA: 28 cm
T.mm: 4
METHOD: Inc
NOTCH: VIF
REFER: 9

CAT NO. 239
LOCATION: WM. Trangler, Peach Cr.
TYPE: Reen T
DIA: 30 cm
T.mm: 4
METHOD: Inc
NOTCH: VIF
REFER: 9

CAT NO. 235
LOCATION: WM. Trangler, Peach Cr.
TYPE: Reen T
DIA: 30 cm
T.mm: 4
METHOD: Inc
NOTCH: VIF
REFER: 9

SCALE.Cm
0 1 2 3

CAT NO. 236
LOCATION: WM. Hanson, Peach Creek
TYPE: G: Gc
DIA: 28 cm
T.mm: 4
METHOD: Inc
NOTCH: VIF
REFER: 9

CAT NO. 239
LOCATION: WM. Trangler, Peach Cr.
TYPE: Reen T
DIA: 30 cm
T.mm: 4
METHOD: Inc
NOTCH: VIF
REFER: 9

CAT NO. 235
LOCATION: WM. Trangler, Peach Cr.
TYPE: Reen T
DIA: 30 cm
T.mm: 4
METHOD: Inc
NOTCH: VIF
REFER: 9

SCALE.Cm
0 1 2 3
II Miscellaneous

SCALE Cm

CAT NO. 245
LOCATION N.E. Trinity Delta
TYPE G. C.
DIA 9
T mm 6
METHOD Fm NOTCH 7 REFER 8

SCALE Cm

CAT NO. 233
LOCATION W. H. Hanger Seed Farm
TYPE Bone T
DIA 83.5 cm
T mm 8a
METHOD NOTCH COL REFER 8

SCALE Cm

CAT NO. 250
LOCATION N.E. Trinity Delta
TYPE G. C.
DIA
T mm
METHOD NOTCH COL REFER 9

SCALE Cm

CAT NO. 260
LOCATION W.H Caney Creek (Charleston)
TYPE G. C.
DIA 14.5 cm
T mm 6
METHOD Imp. NOTCH PN REFER 10

CAT NO. 263
LOCATION W.H. Caney Creek (Charleston)
TYPE G. C.
DIA 14.5 cm
T mm 9
METHOD NOTCH FN REFER 10